e premte, 26 tetor 2007

Estudio de los cromosomas

Definición:

Es cada uno de los pequeños cuerpos en forma de bastoncillos en la que se organiza la cromatina del núcleo celular en la mitosis y la meiosis.
Los cromosomas son los portadores de la mayor parte del material genético y condicionan la organización de la vida y las características hereditarias de cada especie. Los experimentos de Mendel pusieron de manifiesto que muchos de los caracteres del guisante dependen de dos factores, después llamados genes, de los que cada individuo recibe un ejemplar procedente del padre y otro de la madre.


Característica o propiedades función:

Que se organiza la cromatina del núcleo celular en la mitosis y la meiosis
Cada uno se divide longitudinalmente, dando origen a dos cadenas iguales.
Su número es constante para una especie determinada, en homo sapiens (el ser humano) se tiene 46 de ellos 44 son autosómicos y 2 son sexuales.

Funciones Metabólicas.

Nutrición: (animal) a través de la membrana selecciona sustancias que deja entrar:
Selección de la membrana
Digestión interna (fragmenta)
Asimilación celular (síntesis proteica)
Respiración: Se realiza en mitocondrias y protoplasma, para conseguir ATP.
Circulación: Movimientos internos de la célula y similares a los movimientos e los intestinos (en sentido de las manecillas del reloj).
Excreción: a través de la membrana fundamental.
Secresiones específicas: a través del aparato de Golgi y lisosomas.
Crecimiento: Resultado de la nutrición y regulado por el propio material genético (ADN).
Transmisión de información: regulado por el ADN (estirpe y origen).
Clases:

Clases de cromosomas:
· Metacéntrico: brazos iguales.
Un cromosoma metacéntrico es un cromosoma cuyo centrómero se encuentra en la mitad del cromosoma, dando lugar a brazos de igual longitud.
Cuatro pares de los cromosomas humanos poseen una estructura metacéntrica, el 1, el 3, el 19 y el 20; también, el cromosoma X se presenta así.
· Submetacéntrico: brazos de distinto largo.
Un cromosoma submetacéntrico es un cromosoma en el cual el centrómero se ubica de tal manera que un brazo en ligeramente más corto que el otro.
La mayor parte de los cromosomas humanos son submetacéntricos excepto los cromosomas 1, 3, 19, 20 y el X que son metacéntricos y 13, 14, 15, 21 y 22 que son acrocéntricos; además, el cromosoma Y a veces es considerado submetacéntrico aunque otros lo describen como acrocéntrico sin satélite.
· Acrocéntrico: un brazo muy corto.
Un cromosoma acrocéntrico es aquel cromosoma en el que el centrómero se encuentra más cercano a uno de los telómeros, dando como resultado un brazo muy corto (p) y el otro largo (q).
De los 23 pares de cromosomas humanos el cromosoma 13, el 14, el 15, el 21 y el 22 son acrocéntricos y actúan como organizadores nucleolares.
· Telocéntrico: el centrómero está en uno de los extremos.
Un cromosoma telocéntricoes un cromosoma en el que el centrómero está localizado en un extremo del mismo.
De los cromosomas humanos ninguno presenta esta característica; pero, por ejemplo, los 40 cromosomas del ratón común son telocéntricos.
A.-ACOCENTRICO
B.-TELOCENTRICO
C.-SUBMETACENTRICO
D.-METACENTRICO
LEYES DE MENDEL


Primera ley de Mendel:
A esta ley se le llama también Ley de la uniformidad de los híbridos de la primera generación (F1), y dice que cuando se cruzan dos variedades individuos de raza pura, ambos homocigotos, para un determinado carácter, todos los híbridos de la primera generación son iguales.
Los individuos de esta primera generación filial (F1) son heterocigóticos o híbridos, pues sus genes alelos llevan información de las dos razas puras u homocigóticas: la dominante, que se manifiesta, y la recesiva, que no lo hace..
Mendel llegó a esta conclusión trabajando con una variedad pura de plantas de guisantes que producían las semillas amarillas y con una variedad que producía las semillas verdes. Al hacer un cruzamiento entre estas plantas, obtenía siempre plantas con semillas amarillas.
Otros casos para la primera ley. La primera ley de Mendel se cumple también para el caso en que un determinado gen dé lugar a una herencia intermedia y no dominante, como es el caso del color de las flores del "dondiego de noche". Al cruzar las plantas de la variedad de flor blanca con plantas de la variedad de flor roja, se obtienen plantas de flores rosas, como se puede observar a continuación:
Segunda ley de Mendel: A la segunda ley de Mendel también se le llama de la separación o disyunción de los alelos.
Experimento de Mendel. Mendel tomó plantas procedentes de las semillas de la primera generación (F1) del experimento anterior y las polinizó entre sí. Del cruce obtuvo semillas amarillas y verdes en la proporción que se indica en la figura. Así pues, aunque el alelo que determina la coloración verde de las semillas parecía haber desaparecido en la primera generación filial, vuelve a manifestarse en esta segunda generación.
Los dos alelos distintos para el color de la semilla presentes en los individuos de la primera generación filial, no se han mezclado ni han desaparecido , simplemente ocurría que se manifestaba sólo uno de los dos. Cuando el individuo de fenotipo amarillo y genotipo Aa, forme los gametos, se separan los alelos, de tal forma que en cada gameto sólo habrá uno de los alelos y así puede explicarse los resultados obtenidos.
Otros casos para la segunda ley. En el caso de los genes que presentan herencia intermedia, también se cumple el enunciado de la segunda ley. Si tomamos dos plantas de flores rosas de la primera generación filial (F1) y las cruzamos entre sí, se obtienen plantas con flores blancas, rosas y rojas. También en este caso se manifiestan los alelos para el color rojo y blanco, que permanecieron ocultos en la primera generación filial.
Retrocruzamiento
Retrocruzamiento de prueba.
En el caso de los genes que manifiestan herencia dominante, no existe ninguna diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA), pues ambos individuos presentarían un fenotipo amarillo. La prueba del retrocruzamiento, o simplemente cruzamiento prueba, sirve para diferenciar el individuo homo- del heterocigótico. Consiste en cruzar el fenotipo dominante con la variedad homocigótica recesiva (aa).
- Si es homocigótico, toda la descendencia será igual, en este caso se cumple la primera Ley de Mendel.
- Si es heterocigótico, en la descendencia volverá a aparecer el carácter recesivo en una proporción del 50%.

Tercera ley de Mendel. Se conoce esta ley como la de la herencia independiente de caracteres, y hace referencia al caso de que se contemplen dos caracteres distintos. Cada uno de ellos se transmite siguiendo las leyes anteriores con independencia de la presencia del otro carácter.

Experimento de Mendel. Mendel cruzó plantas de guisantes de semilla amarilla y lisa con plantas de semilla verde y rugosa ( Homocigóticas ambas para los dos caracteres).Las semillas obtenidas en este cruzamiento eran todas amarillas y lisas, cumpliéndose así la primera ley para cada uno de los caracteres considerados , y revelándonos también que los alelos dominantes para esos caracteres son los que determinan el color amarillo y la forma lisa.Las plantas obtenidas y que constituyen la F1 son dihíbridas (AaBb).

Estas plantas de la F1 se cruzan entre sí, teniendo en cuenta los gametos que formarán cada una de las plantas. Se puede apreciar que los alelos de los distintos genes se transmiten con independencia unos de otros, ya que en la segunda generación filial F2 aparecen guisantes amarillos y rugosos y otros que son verdes y lisos, combinaciones que no se habían dado ni en la generación parental (P), ni en la filial primera (F1).Asímismo, los resultados obtenidos para cada uno de los caracteres considerados por separado, responden a la segunda ley.